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Summary

The folding of RNA sequences into secondary structures is a simple
yet biophysically grounded model of a genotype-phenotype map.
Its computational and mathematical analysis has uncovered a sur-
prisingly rich statistical structure characterized by shape space cov-
ering, neutral networks and plastogenetic congruence. I review
these concepts and discuss their evolutionary implications.

1 Introduction

Phenotype refers to the physical, organizational and behavioral expression
of an organism during its lifetime. Genotype refers to a heritable reposi-
tory of information that instructs the production of molecules whose inter-
actions, in conjunction with the environment, generate and maintain the
phenotype. The processes linking genotype to phenotype are known as de-
velopment. They intervene in the genesis of phenotypic novelty from genetic
mutation. Evolutionary trajectories therefore depend on development. In
turn, evolutionary processes shape development, creating a feed-back known
as “evo-devo”1,2.

The main thrust of this review is to show that some key aspects of this
feed-back are present even in the microcosm of RNA folding. In a narrow
sense, the relation between RNA sequences and their shapes is treated as a
problem in biophysics. Yet, in a wider sense, RNA folding can be regarded
as a minimal model of a genotype-phenotype relation3.

The RNA model is not a representation of organismal development. The reg-
ulatory networks of gene expression and signal transduction that coordinate
the spatiotemporal unfolding of complex molecular processes in organismal
development (for recent overviews see4,5) have no concrete analogue in the
RNA sequence-to-structure map. Developmental processes themselves evolve
and this too is outside the scope of the rather simple notion of RNA fold-
ing considered here. Yet, the RNA folding map transparently implements
concepts like epistasis and phenotypic plasticity, thus enabling the study
of constraints to variation, canalization, modularity, phenotypic robustness
and evolvability. As detailed in this review, the statistical architecture of
the sequence-to-structure map in RNA offers explanations for patterns of
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phenotypic evolution, such as directionality and the partially punctuated na-
ture of evolutionary change. This statistical architecture is critically shaped
by “developmental neutrality”, that is, the extent to which many genotypes
map into the same phenotype. The RNA model is an abstract analogue of
development in that it grounds a discussion of these issues within a simple
biophysical framework. The fact that neutrality is the key structuring factor
does not hinge on the developmental mechanisms generating neutrality, but,
of course, the extent of neutrality does. Whether the features present in the
RNA map carry over to more complex genotype-phenotype maps (and to
which ones at that) will depend on the genetic robustness of developmental
mechanisms.

An important purpose of simple and abstract models in biology is to sharpen
the questions – perhaps even to understand what the questions are. In this
vein, the RNA model contributes in making more precise what we mean
when we speak of “phenotype space”. Like any other phenotype, an RNA
shape cannot be heritably modified in a direct way, but requires a change in
the underlying sequence. This indirection in transforming one phenotype into
another makes the structure of phenotype space dependent on the structure of
genotype space and the mapping from genotype to phenotype. The absence
of a formal theory addressing the latter dependence in the neo-Darwinian
school of evolutionary thought has led to unwarranted assumptions about
the structure of phenotype space and to much confusion about continuity
and discontinuity in evolution (for a discussion see6).

2 RNA phenotypes

Secondary structure. RNA structure can be defined at several levels
of resolution. The level known as secondary structure is presently the best
compromise between theoretical tractability and empirical accessibility on a
large scale. The term secondary structure denotes any planar pattern of base
pair contacts (Fig. 1). It is a topological concept and should not be confused
with some kind of two-dimensional structure. In fact, all representations
in Fig. 1 are equivalent. Planarity means that pairings between positions
in different loop regions are not considered. In the circle representation of
Fig. 1B, chords never cross. The secondary structure repertoire of a sequence
consists of all base pairings that are compatible with the rules A·U, G·C and
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G·U.

A secondary structure graph can be uniquely decomposed into loops and
stacks7. A stack is a run of adjacent pairs, corresponding to a double-helical
arrangement in the three-dimensional structure. A loop consists of varying
numbers of unpaired bases and stacks that originate from it (Fig. 1A). The
major stabilizing free energy contribution comes from stacking interactions
between adjacent base pairs. The G·C/G·C stacking interaction is roughly
3 (2) times the A·U/A·U (A·U/G·C) interaction8. Loops, in contrast, are
destabilizing. The formation of a stack necessarily causes the formation
of a loop. This “frustrated” energetics can generate a very rugged energy
landscape over the secondary structure space of a sequence. Because the
energetically relevant units are loops and stacks rather than individual base
pairs, a structure that minimizes free energy is oftentimes unique and quite
different from one that maximizes the base pair count. For example, the
77 nucleotide histidine tRNAhis (EMBL accession RH1660) has one mini-
mum free energy secondary structure (22 base pairs) and 149, 126 secondary
structures realizing the maximum of 26 base pairs9.

The free energy contributions of stack and loop elements have been empiri-
cally determined8,10–13. Combinatorial algorithms7,14–16, based on a powerful
optimization technique known as dynamic programming17, reference these
parameters in computing the minimum free energy structure of a sequence.
This procedure, however, does not consider the dynamical folding process by
which a sequence acquires its structure.

Base pairings that break planarity are called pseudoknots and are consid-
ered to be tertiary structure elements. Thermodynamic18 and kinetic19 algo-
rithms that account for pseudoknots have been developed recently. Although
widespread in naturally occurring RNAs, pseudoknots will not be considered
here.

The secondary structure participates as a geometric, kinetic and thermody-
namic scaffold20 in the formation of the three-dimensional structure, which
involves bringing secondary structure elements into proximity by means of
pseudoknots, non-standard base pairings and bivalent counterions. Its cor-
relation with functional properties of the tertiary structure is evidenced by
phylogenetic conservation21. Further details on the biophysical and compu-
tational aspects of RNA secondary structure can be found in several reviews
7,22–24.
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Figure 1: RNA secondary structure representations. A secondary struc-
ture is a graph of contacts between nucleotides at positions i = 1, . . . , n along
the sequence. Position 1 is the 5’-end. The graph has two types of edges: the
backbone connecting nucleotide i with nucleotide i+1 (red) and hydrogen-bonded
base pairings between non-adjacent positions (green). The set of base-pairings, P ,
must satisfy two conditions: (i) each nucleotide can pair with at most one other
nucleotide (green edges in A or B), and (ii) pairings cannot cross (this is best ex-
pressed by representation B, where chords, standing for base pairs, are not allowed
to intersect). Condition (ii) expresses (outer)planarity. (A) Typical visualization
of a structure. (B) Circle representation. (C) Line-oriented representation. A
dot stands for an unpaired position and a pair of matching parentheses indicates
paired positions. D Tree representation. Base pairs are internal nodes and un-
paired positions correspond to leaves. The top node (square) keeps the tree rooted
for structures with dangling 5’- or 3’-ends and joints. (A-D) contain exactly the
same structure information.
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I will henceforth refer to the (minimum free energy) secondary structure as
(mfe) shape. A wealth of different phenotypes can be defined and computed
at this level of structure (Fig. 2).

Energy (kinetic) landscape. Thermodynamic folding algorithms only
map a sequence into its global mfe shape. In contrast, kinetic algorithms
are concerned with how a sequence folds and hence with the rates and paths
through configuration space that constrain and promote folding19,25–28. A
sequence may fold reliably into a shape other than the mfe shape or it
may switch between metastable shapes with a long lifetime relative to the
molecule’s interaction time scale29,30.

In modelling the folding process, the key concept is the energy (or kinetic)
landscape (Fig. 2A). The configuration space of the many shapes compatible
with a given sequence is defined in terms of elementary “moves” that inter-
convert shapes. The free energy associated with each shape gives rise to an
energy landscape over the configuration space and the energy differences be-
tween adjacent shapes determine (roughly) the transition probabilities19,28,31

The energy landscape of a sequence is the RNA analogue of Waddington’s
developmental or epigenetic landscape32. Sequences folding into the same
mfe shape can differ profoundly in their energy landscapes. In this limited
sense, the RNA model is capable of mimicking an “evolution of development”.
The analogy breaks down when the mechanisms of development themselves
evolve33. After all, an RNA sequence doesn’t code for the base pairing rules.

Phenotypic plasticity. A sequence can wiggle between alternative low-
energy shapes as a consequence of energy fluctuations comprising a few kT (k
is the Boltzmann constant and T the absolute temperature). The phenotypic
plasticity of a sequence is quantified by the probability pij that positions i
and j are paired with one another. The pij are obtained from a calculation
of the partition function34, Z =

∑
i exp(−E(Si)/kT ), where E(Si) is the

free energy of shape Si. Fig. 2B depicts a matrix of such probabilities (upper
triangle), compared to a rendition in the same format of the mfe shape (lower
triangle). To further express plasticity as a single number, the matrix of base
pairing probabilities can be collapsed into an entropy-like quantity35.

A useful description of plasticity, to which I shall return later, is the set of all
shapes within a free energy interval of, say, 5kT (3 kcal/mol at 37◦C) from
the groundstate9, Fig. 2C. This set is termed the plastic repertoire36.
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Figure 2: RNA phenotypes. All examples refer to the sequence of Fig. 1. (A)
Developmental landscape. The graph shows the barrier-tree28 of the low-energy
portion of the free energy landscape. The barrier-tree expresses the likelihood of
a conversion from one shape configuration into another. This is how it should be
read. The vertical dimension means free energy. The leaves of the tree are shapes
(not shown) that correspond to local energy minima and the highest point on the
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direct route from one minimum to any other indicates the energy barrier that
controls the likelihood of that route. The likelihood (at constant temperature) of
switching between any two configurations is exponential in the (negative) height
of that barrier. High barriers mean very long crossing times (or low crossing
probabilities). The structure of this barrier landscape determines the folding paths
and rates. (B) The matrix of base-pairing probabilities. The size of a dot at
location (i, j) in the upper triangle depicts the probability that position i is paired
with position j (i < j). For comparison, the lower triangle displays the pairing
pattern of the mfe shape. While the mfe pattern is predominant in the upper
triangle, dots of significant size exist at alternative positions, indicating different
folds. (C) Plastic repertoire. The set of shapes within 5kT (3 kcal/mol at 37◦

C) from the mfe shape. Only a few shapes are shown and their relative energy is
indicated on the vertical bar whose total length corresponds to 3 kcal/mol. (D)
Norm of reaction I (melting profile). The series of mfe shapes as the temperature
is raised from 0◦ C to the temperature at which this sequence loses all secondary
structure. (E) Norm of reaction II (specific heat). The specific heat is given
by H = −T∂2G/∂T 2 with G = −RT logZ (G is the Gibbs free energy, R the gas
constant, T the absolute temperature and Z the partition function). H profiles the
changes in the statistical weights of the shape configurations available to an RNA
sequence as the temperature is raised. The humps in the specific heat indicate
the major melting transitions at 28, 48, 67 and 87 degrees Celsius shown in (D).
This function can be measured by differential scanning calorimetry. (F) Loop-
structure: the relative arrangement of loops disregarding the size of stacks and
loops. (G) Joint shape of two hybridized RNA sequences.

Knowing the partition function Z and assuming thermodynamic equilibra-
tion, we compute the fraction of time a molecule spends in any shape Si of
its plastic repertoire as p(Si) = exp(−E(Si)/kT )/Z. The extent to which
the mfe shape is the most occupied configuration varies significantly among
sequences.

Plasticity so-defined emphasizes an intrinsic phenotypic variance, induced by
molecular energy fluctuations at nonzero temperature. A more traditional
use of the term, known as norm of reaction 37, refers to persistent phenotypic
change as a function of environmental parameters. The biophysical analogue
in RNA is the melting profile, that is, the suite of mfe shapes as a function of
temperature (Fig. 2D), or its statistical equivalent, the specific heat (Fig. 2E).
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The difference between the two plasticities (intrinsic variance and norm of
reaction) is best understood in terms of the free energy landscape underlying
the folding behavior of a sequence. The topography of a free energy landscape
depends non-monotonically on the temperature (the environment). Plasticity
understood as a norm of reaction refers to transitions between mfe shapes as
the free energy landscape is deformed by temperature, while plasticity under-
stood as intrinsic phenotypic variance refers to transitions between different
shapes on a constant free energy landscape.

Loop-structure. A shape can be coarse-grained by disregarding the size
of loops and the length of stacks, retaining only the relative arrangements of
loops (Fig. 2F). This skeletal morphology will be referred to as loop-structure.

Interaction phenotypes. Base pairs may be formed within or between
molecules. Straightforward extensions of standard thermodynamic and ki-
netic folding algorithms yield the joint shape acquired by two (or more)
sequences22. This defines a natural notion of interaction (Fig. 2G) which
could form the basis for RNA models of coevolution.

3 Neutrality, epistasis, canalization

I begin with some terminology. Sequences that differ from a reference se-
quence by n point mutations are called n-error neighbors. A neutral mutation
is a nucleotide substitution that preserves the mfe shape (but it may affect
everything else, such as free energy, plastic repertoire and kinetic landscape).
A one-error neighbor that preserves the same mfe shape is termed a neutral
neighbor. A sequence position that allows for at least one neutral mutation
is termed a neutral position (Fig. 3). The neutrality of a sequence is the
fraction of neutral (one-error) neighbors.

Neutrality is here defined with respect to mfe shape, not fitness. Fitness is
a function from phenotypes to numbers and if phenotype is defined as mfe
shape, then neutrality extends to fitness as well. If phenotype and fitness are
defined in terms of the plastic repertoire of a sequence, I shall still refer to
sequences that share the same mfe shape as neutral, even when their plastic
repertoires (and fitness) differ.

Epistasis means that the phenotypic consequences of a mutation at gene i de-
pend on the genetic background provided by the remaining genotype38. This
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Figure 3: Epistasis. Bullets indicate a neutral position. In the top left sequence,
position x is neutral because the substitution of G for C preserves the shape, as
shown at the top on the right. Yet, neutral positions do change as a consequence of
a neutral mutation. The green and red bullets indicate positions that have become
or stopped being neutral, respectively. The lower part illustrates that the neutral
mutation from C to G at x influences the consequences of swapping A for G at
the (non-neutral) position y.
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dependency is mediated by networks of interactions among gene products.
The same concept applies to RNA, when substituting “gene” with “sequence
position”. The transparency (but also the limitation) of the RNA genotype-
phenotype model derives from the identity of epigenetic and epistatic inter-
actions, since phenotype is defined directly in terms of interactions among
sequence positions.

A mutation changes the base pairing possibilities of a sequence and hence
the network of epistatic interactions. The mfe shape shown at the top left of
Fig. 3 remains the same if C is substituted by G at the position labelled x.
Yet, whether x is C or G determines which mfe shape is obtained as a result
of mutating position y from G to A. More subtly, the neutral substitution
from C to G at x alters the number and identity of neutral positions.

The tendency of a sequence to adopt a different shape upon mutation (vari-
ability) is a prerequisite for its capacity to evolve in response to selective
pressures (evolvability). In this sense, variability underlies evolvability2,39.
Fig. 3 illustrates that variability (quantified as the number of non-neutral
neighbors) is sequence dependent. Variability can therefore evolve39,40.

Canalization 41–43 is a biological concept related to robustness in physics and
engineering44 aimed at quantifying a system’s resilience to perturbation. Bio-
logists distinguish between environmental and genetic canalization, depend-
ing on the nature of the perturbation. In our highly simplified RNA context,
genetic canalization is phenotypic robustness to mutation and environmen-
tal canalization is phenotypic robustness to environmental change or noise.
Neutrality, as defined here, is basically a measure of genetic canalization,
while plasticity is the converse of environmental canalization.

4 The statistical deep-structure of the RNA folding

map and its consequences

When RNA folding was employed as a toy-model to study evolution in pop-
ulations of individuals equipped with a biophysically grounded genotype-
phenotype relation45, it soon became clear that the evolutionary dynamics
must be understood in terms of the statistical characteristics of folding. Fre-
quency distributions of structural elements and shape correlation functions
in sequence space were estimated by means of random walks and by folding
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large ensembles of random RNA sequences of varying length, nucleotide al-
phabet and composition46–49. This simple shift towards a statistical view of
the folding map brought into focus features that were insensitive to varia-
tions in the free energy parameters, the algorithmic details and the accuracy
of prediction. Here I focus on this “deep structure” of the folding map and
its consequences for evolutionary innovation and dynamics.

4.1 One phenotype, many genotypes

There are significantly more sequences than secondary structures50. An
asymptotic upper bound on the number of possible shapes, Sn, for sequences
of length n is Sn = 1.48 n−3/21.85n, compared to 4n possible sequences51 .
Exhaustive folding indicates that the number of actually realized shapes is
considerably smaller than this upper bound52. The situation is not altered
significantly by accounting for pseudoknots53. To appreciate the degree of
degeneracy of the folding map, consider the set of all possible binary GC
sequences of length 30 (GC-30). 1.07 · 109 (= 230) sequences fold into only
218, 820 shapes52,54.

The frequency of shapes is strongly biased. The rank-ordered frequency dis-
tribution follows qualitatively a generalized Zipf-law50, f(r) = A(B + r)−γ,
where r denotes rank (the most frequent shape has rank 1) and f(r) is the
fraction of sequences folding into the shape of rank r. For AUGC-sequences
of meaningful size, such distributions can be presently computed for loop-
structures only. Abundancy distributions for fully resolved secondary struc-
tures were obtained by exhaustively folding all GC-30 sequences52 . The
constants A, B and γ depend on sequence length and nucleotide alphabet.
Examples for γ-values are 1.7 (AUGC-100, loop-structures) and 2.9 (GC-30,
full secondary structures). The Zipf-distribution assigns a high abundancy
to a tiny number of shapes compared to those in the power-tail. A frequent
shape may be defined as one realized by more sequences than the average
55, 4n/Sn, which amounts to 4907 in the case of GC-30 sequences. With
this definition, only 10.4% of the GC-30 shapes are frequent, yet 93% of all
GC-30 sequences fold into them. As sequence length increases, a decreas-
ing percentage of shapes is frequent, while being realized by an increasing
percentage of sequences52.

A frequent shape compromises between two opposing trends. First, it must
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be realizable with sufficient thermodynamic stability. Otherwise, mutations
would be too likely to alter the shape, reducing the number of sequences
folding into it. Second, it must be frequent on combinatorial grounds. While
long stacks enhance the thermodynamic stability of a shape, they lower its
combinatorial realizability by constraining the choice of nucleotides at paired
positions. The open chain is combinatorially best, but thermodynamically
among the worst (for longer sequences). The opposite is the case for a long
hairpin. Frequent shapes occupy a middle ground by allocating base pairs to
separate stacks, since each stack creates a loop that enhances combinatorial
realizability. One is tempted to speculate that among these shapes are also
the most “interesting” ones, since the diversity of structural elements can be
exploited at the tertiary level to create elements with potential functionality,
such as “pockets”, “arms”, “tweezers”, “spacers” and the like.

4.2 Neutral networks

A sequence folding into a frequent shape has typically a significant fraction
of neutral one- or two-error neighbors. The same holds for these neighbors.
This results in an extensive, mutationally connected network of sequences,
for which we coined the term neutral network 50 (see, for a schematic example,
the “green” network in Fig. 4). Models based on random graphs formalize
neutral networks as a percolation phenomenon56. The possibility of changing
the genotype while preserving its phenotype is both a manifestation of pheno-
typic robustness to genetic mutations and a key factor underlying evolvability.
This only seems contradictory. Imagine a population with phenotype A in
a situation where phenotype B would be advantageous. Phenotype B, how-
ever, may not be accessible in the vicinity of the population’s current location
in genotype space. In the mythical image of a rugged fitness (or adaptive)
landscape57, the population would be stuck at a local peak, forever waiting
for an exceedingly unlikely event to deliver the right combination of several
mutations. Yet, if phenotype A has an associated neutral network in geno-
type space, the population can drift on that network into far away regions,
vastly improving its chances of encountering the neutral network associated
with phenotype B 3,58–60, see Fig. 4. Neutral networks enable phenotypic in-
novation by permitting the gradual accumulation of silent mutations. These
alter the web of epistatic interactions, enabling a subsequent mutation to
become phenotypically consequential. Recall that neutral mutations also
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Figure 4: Neutral networks induce the topology of shape space. A
schematic depiction of neutral networks in sequence space. (For a more accu-
rate representation, the reader ought to imagine at least a 100-dimensional space.)
A population located in the upper right corner of the network of sequences that
possess the “green” phenotype cannot access the “blue” phenotype in its genetic
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vicinity. Yet, the population can diffuse on the green network until it encounters
the blue network. Neighborhood between shapes (phenotypes) is defined in terms
of the fraction of shared boundary between the corresponding networks in sequence
space (indicated by thick lines with alternating colors), see text for details. In this
schematic of four networks, the red network is near the green one, because a ran-
dom step out of red has a high probability of yielding green. The green network,
however, is not near the red one, because a random step out of green has a low
probability of yielding red. This effect results from very differently sized networks,
like those associated with the loss and formation of a stack, Fig. 6A. The alterna-
tive case is one in which the networks have similar size, but border one another
only rarely; green and blue are not in each other’s neighborhood. This correpsonds
to the shift transformation of Fig. 6A.

influence the degree of neutrality (Fig. 3), causing the connectivity within a
neutral network to be highly variable.

The existence of neutral paths in RNA sequence space was impressively
demonstrated in a recent experiment. Schultes and Bartel61 constructed
an intersection sequence 28,62 between two evolutionarily unrelated catalytic
RNAs with no fortuitous shape similarities – a class III self-ligating ribozyme
evolved in vitro and a naturally occurring hepatitis delta virus self-cleaving
ribozyme. The intersection sequence was located about 40 mutations from
each original ribozyme and performed both catalytic tasks at highly reduced
rates (Fig. 5). Within a few mutations from the intersection sequence, two
sequences were found, each specialized to one task with a catalytic activ-
ity comparable to the original ribozyme. Starting from these sequences, two
paths of about 40 steps were identified that led all the way to each original se-
quence, while maintaining the level of catalytic activity. This demonstrates
the existence of neutral paths for different ribozyme folds and their close
apposition, compatible with the scenario described above.

The importance of neutrality for the diffusive motion of allele frequencies
and their rate of fixation was established by Kimura63,64 and has since been
extended in numerous ways65–67. The concept of neutral networks, how-
ever, has brought into focus issues that go beyond the dynamics of allele
frequencies. First, a population does not move entirely randomly over a net-
work, but tends to concentrate at highly interconnected regions68. Thus, a
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selection/mutation balance on a neutral network automatically yields phe-
notypes that are relatively robust to mutations68. Second, evolution requires
the hereditary transmission of a phenotype rather than any particular geno-
type. In a neutral network, the loss of a genotype does not imply the loss of
its phenotype, because many neighboring mutants still map into that same
phenotype. This significantly increases the mutation rate threshold at which
heredity breaks down56,58. Third, the partitioning of sequence space into
neutral networks suggests a notion of nearness between phenotypes that im-
poses a new topology on phenotype space (Fig. 4) with a corresponding
formalization of evolutionary continuity3,6,69,70 detailed below.

Figure 5: The Schultes-Bartel neutral path experiment. Schultes and Bar-
tel61 have established the existence and apposition of neutral paths by stepwise
changing sequences over more than 40 positions, while retaining structure and func-
tional activity. See text for details. (Reprinted with permission from E. A. Schultes
and D. P. Bartel, “One Sequence, Two Ribozymes: Implications for the Emer-
gence of New Ribozyme Folds”, Science, 289, 448–452 (2000). Copyright 2000
American Association for the Advancement of Science.)
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4.3 Shape space covering

Neutral networks of frequent shapes are sponge-like objects that live in a
high-dimensional sequence space. These networks are strongly interwoven.
Imagine a (hyper)sphere centered at some random sequence. How big must
its radius be, for it to contain at least one point of the neutral network
of each frequent shape? Numerical procedures50 and analytical estimates54

yield answers that are significantly smaller than the radius (n/2) of sequence
space. For AUGC sequences of length n = 100 the radius of that sphere
is about 15. In other words, given a random sequence of length 100, 15
point mutations are, on average, sufficient to realize any frequent shape.
A relatively small volume of sequence space around each random sequence
realizes the entire statistically relevant portion of shape space. In this case,
the haystack in which evolution has to look for the needle has been reduced
by a factor of 1037. We refer to this phenomenon as shape space covering 50,
borrowing a term coined by Perelson and Oster in an immunological context
71.

Changing perspective on the same issue, consider all shapes found in the
one-error neighborhood off a neutral network. These shapes are, in principle,
accessible to a population that is drifting on the network at small mutation
rates59. It turns out that the vast majority of loop-structures (Fig. 2F)
formed by randomly generated sequences (of fixed length) occur in the one-
error neighborhood of the neutral network of any frequent shape3. Thus,
for a frequent shape α and a frequent loop-structure Ω, there likely exists at
least one sequence folding into α such that a single point mutation tips it
into some shape whose loop-structure is Ω.

4.4 The topology of RNA shape space

A space is formally a set with a structure that derives from relationships
among its elements. A relation of distance gives rise to a metric space.
For example, the distance between two RNA sequences is the number of
positions in which they differ (Hamming distance). For a metric space to
have biological relevance, the distance must be defined in terms of naturally
occurring operations that interconvert elements, such as point mutations in
sequence space. This raises the question about the structure of shape space.
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A distance (or similarity measure) between shapes could be defined in terms
of formal “edit”-operations on the shape representations of Fig. 1. This is
perfectly useful for defining selection or sorting criteria. Yet, a shape space
so-defined is of no help in understanding evolutionary histories, because there
are no physical operations that interconvert shapes heritably. To heritably
convert one shape into another, requires mutating the underlying sequence,
and this forces the folding (or genotype-phenotype) relation into the picture.

Recall that a neutral network is the set of all sequences adopting a particular
shape. Fontana and Schuster construct shape space by defining a relation of
accessibility between two shapes, α and β, in terms of the adjacency of their
corresponding neutral networks in sequence space3,69, Fig. 4. The boundary
of a neutral network consists of all sequences that are one mutation off the
network. The intersection of the neutral network of β with the boundary of
the neutral network of α, relative to the total boundary of α’s network, is a
measure of the probability that one step off a random point on the neutral
network of α there is a sequence folding into β. Accessibility, however, is
not symmetric and therefore not a distance (Fig. 4). To wit: the loss and
formation of a stack. A stack in shape α will be only marginally stable in most
sequences realizing α. As a consequence, point mutations are more likely to
cause its loss. In contrast, creating a stack in a single mutation requires
specially poised sequences. RNA folding is a simple mechanism giving rise to
strongly asymmetric transition probabilities. A shape β may be significantly
easier to access from shape α than the other way around.

To convert accessibility distributions into a binary attribute of nearness, we
define the neighborhood of shape α as the set containing α and all shapes
accessible from α above a certain likelihood3,69 – a “frequent neighbor”, akin
to the notion of a frequent shape. The major implications of this construction
do not depend on the exact value of the cutoff point6. Because accessibility
is asymmetric, shape β may be near (read: in the neighborhood of) α, but α
may not be near β. This construction of shape-neighborhood is technically
consistent with the formalization of the neighborhood concept in topology
6,72. Phenotype space has thus been organized into neighborhoods without
assuming a distance. To non-topologists, this may seem counterintuitive,
since common sense conceives neighborhood in terms of “small distance”.

The notion of neighborhood is sufficient to define continuity mathematically.
In the present context, a genetic path is continuous, if the offspring of a
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sequence is near that sequence in the topology of genotype space. Specifi-
cally, offspring and parent differ by one point mutation. Similarly, a path in
phenotype space is continuous if the phenotype of the offspring is near the
phenotype of the parent in the accessibility topology just defined. Think of
an evolutionary trajectory as a time series of genotypes (G) with their associ-
ated phenotypes (P) – a GP path. A GP path is continuous, if it is continuous
at the genetic and the associated phenotypic level. The key question now
becomes: given any two shapes, is there a continuous GP path connecting
them? The answer is no. There is a well-defined class of shape transfor-
mations (Fig. 6A) that is discontinuous along any continuous genetic path
3. A transition from one neutral network to another involving such a shape
transformation, while possible by a single point mutation, depends on very
special, hence relatively rare, sequences. The two classes of discontinuous
transformations are stack formations and shifts (Fig. 6A). They both require
the simultaneous change of several base pairs, since partial rearrangements
result in thermodynamically unstable intermediates. The notion of disconti-
nuity reflects precisely those transformations that are difficult to achieve by
virtue of the mechanisms underlying the map from genotype to phenotype.

A few observations deserve emphasis. First, (dis)continuity cross-cuts mor-
phological (dis)similarity. Some transitions between similar shapes are dis-
continuous (e.g. the shift in Fig. 6A) and some transitions between dissimilar
shapes are continuous (e.g. the loss of a stack). Second, the notion of discon-
tinuity defined here is not related to sudden jumps in fitness or the discrete-
ness in the variation of a trait. The classes of discontinuity are caused by the
genotype-phenotype map and thus remain the same regardless of the further
mapping from phenotypes to fitness. (Of course, the particular shapes ob-
served at discontinuous transitions will depend on the fitness map.) Third,
the dynamical signature of this phenotype topology is punctuation (Fig. 6B).
A population of replicating and mutating sequences under selection drifts on
the neutral network of the currently best shape until it encounters a gate-
way to a network that conveys some advantage or is fitness-neutral. That
encounter, however, is evidently not under the control of selection. While
similar to the phenomenon of punctuated equilibrium recognized by Eldredge
and Gould74 in the fossil record of species evolution, punctuation in evolving
RNA populations occurs in the absence of externalities (such as meteorite
impact or abrupt climate change in the species case). We refer to it as intrin-
sic punctuation, since it reflects the variational properties of the underlying
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Figure 6: Intrinsic punctuation. (A) Discontinuous shape transformations
in RNA. A green (red) arrow indicates a (dis)continuous transition. There are
several other transformations in the shift category (not shown), see3,69. Continuous
transitions, other than the wholesale loss of a stack, involve the elongation or
shortening of a stack by one base pair (not shown). (B) Punctuation in evolving
RNA populations. A population of RNA sequences evolves under selection for
a specific target shape. The average fitness shows periods of stasis punctuated
by sudden improvements. (Fitness is maximal when the distance to the target
shape has become zero.) Yet, the phenotypic discontinuities (marker lines), as
revealed by an ex post reconstruction of the evolutionary trajectory, are not always
congruent with the fitness picture. The first two jumps in fitness are continuous
in the genotype-phenotype picture and a crucial discontinuous transition is fitness
neutral (first marker line)69,73.
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developmental architecture.

4.5 Plastogenetic congruence, canalization and modularity

The RNA folding map exhibits a consequential correlation between plasticity
and variability. The mfe shapes realized in the one-error neighborhood of a
sequence are, with high frequency, a subset of the shapes in the plastic reper-
toire of that sequence36 (Fig. 7A). A point mutation oftentimes stabilizes a
shape that is suboptimal in the parent, promoting it to mfe shape in the
mutant. We termed this correlation plastogenetic congruence 36 to emphasize
that plasticity and (genetic) variability are correlated, because both depend
on the same structure-forming mechanisms. The significance of such congru-
ence consists in directly coupling a change in plasticity to a change in genetic
variability. While genetic variability is a property affecting the future evolu-
tion of a lineage, plasticity affects an individual in the present and can be an
easy target of selection. Since plasticity correlates with the shape of things
to come, selection on plasticity has a direct impact on a future capacity. In
RNA, environmental canalization (the reduction of plasticity by tightening
the genetic determination of the mfe shape) entails genetic canalization (the
curtailing of phenotypic novelty accessible by mutation). This was hypothe-
sized by Wagner et al.75 on the basis of population genetic models. Selection
pressures favoring the reduction of plasticity may arise from the fitness costs
associated with plasticity37.

Recall that a neutral network is, by definition, neutral only with respect
to the mfe shape. If fitness depends on plasticity, the fitness neutrality of
a neutral network is broken. Under conditions that favor low plasticity,
selection will drive a population into regions of the network consisting of
sequences that fold into the currently best shape as stably as possible. Fig. 7B
illustrates the remarkable degree of canalization attainable in RNA. As many
as 1200 shapes are within 5kT from the groundstate of a random sequence,
while a sequence thermodynamically optimized to fold into the same mfe
shape has as few as 5 alternatives in its plastic repertoire. Sequences with
a highly stabilized mfe shape still form a large (and now almost fitness-
neutral) subnetwork of the network for that shape. A population is therefore
still able to drift in sequence space. Increased thermodynamic stability (low
plasticity) implies, however, an increased buffering of the mfe shape with



W. Fontana: Evo-Devo with RNA 22

GCUGUUAUCGGCGCUCCGUACUACGCUUAAAAAACAGGACAGUUGGGAUACUUGCAAAACCAGGUUCAUCUUGUGA

5’

5’

5’

5’

5’

1

2

3

92
500

1208

5’

5’

5’

5’

5’

5’

5’

5’

5’

1

2

3

92
500

1208

0.014

0.009

0.007

0.001

5’

5’

5’

5’

5’

1

2
3
4

5

6

0.89

0.03

0.02

0.01

0.01

0.009

< 0.001

< 0.001

5’ 5’

A B

Figure 7: Plastogenetic congruence. (A) Plasticity mirrors variability. (B)
Canalization. Both sequences fold into the same mfe shape. The sequence on the
left is randomly chosen and the one on the right has been evolved for reduced plas-
ticity. Genetic canalization has increased dramatically in the latter, as indicated
by the blue dots marking neutral positions.
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respect to genetic mutations (neutrality). In addition, the shapes in the
plastic repertoire of a low-plasticity sequence tend to be morphologically
similar to the mfe shape (Fig. 7B). By plastogenetic congruence, mutations
that alter the mfe shape will do so only slightly. Stated in the language of
neutral networks, only few networks of highly correlated shapes reach into
the highly neutral regions of another network. Populations confined to those
regions (on fitness grounds) have lost the potential for phenotypic innovation.
The loss occurs in a manner imposed by the genotype-phenotype map, for if
the highly neutral regions were random subnetworks of neutral networks, that
loss would be, at worst, partial. We termed this situation neutral confinement
36.

The most striking feature distinguishing low from high plasticity sequences
is the modularity of their mfe shape36. Modularity means autonomy of
shape pieces on the basis of genetic (contextual), kinetic (developmental) and
thermophysical (environmental) criteria. Consider the melting of a modu-
lar shape with rising temperature (Fig. 8A). The modules are identified by
sharp and distinct melting temperatures at which they disappear as a whole,
without disturbing the integrity of the remaining module(s). In the same
vein, the shape of a module is largely insensitive to the sequence of flank-
ing segments and can be therefore “cut” and “pasted”. The organization of
the energy landscapes is perhaps most illuminating (Fig. 8B). The energy
landscape of a high-plasticity sequence allows for deep and frequent misfolds
that are difficult to reverse. The low plasticity sequence, in contrast, has a
perfect folding funnel (a notion coined in the context of protein folding76,77),
which guides the folding process reliably and quickly into the native shape.
This is Waddington’s picture of developmental canalization at the level of an
individual molecule.

The previously described loss of evolvability caused by the loss of plasticity
occurred with respect to point mutations as the source of genetic change.
Intriguingly, that process ends up with sequences whose shapes are highly
modular. Once modularity has originated, however, the production of phe-
notypic novelty (and hence evolvability) could be regained by shifting the
mechanisms of genetic change to recombination36.
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a random sequence (left) and a canalized sequence (right) sharing the same mfe
shape at 37◦ C.
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5 Conclusions: the topology of the possible

The arrival of a new phenotype must precede its survival in a population. Un-
derstanding the dynamics of evolution requires, therefore, charting the space
of possible phenotypes and their transformations by genetic coin tosses. Part
of the difficulty is to define an experimentally and theoretically tractable
genotype-phenotype model whose mechanisms are reasonably well under-
stood. The folding of RNA sequences into shapes is such a model. While
RNA folding is of clear relevance to the molecular biology of the cell and
its evolutionary history78, it seems a leap of faith to claim that develop-
mental biologists can learn anything of interest from it. As emphasized in
the Introduction, RNA folding is clearly not a model of organismal devel-
opment. Yet, it has an abstract connection with development in offering
a realization of concepts – epistasis, plasticity, pathways (and networks of
pathways) through state space, canalization, modularity, to mention only a
few – that play an important role in thinking about development. While the
detailed realization of these concepts is specific to RNA, their consequences
and evolutionary interrelations may be more general.

Among the consequences brought to light by the computational and mathe-
matical analysis of the RNA model are shape space covering, neutral networks
and plastogenetic congruence. The conceptually deepest consequence is the
emerging topology (accessibility structure) of RNA shape space, which leads
one to question the widespread but unwarranted assumption of a highly sym-
metric Euclidean vector space as an adequate model of phenotype spaces in
general. The departure from a metric structure reconciles known patterns
of phenotypic evolution with a developmental perspective. This relieves the
notion of fitness from having to do too much explanatory work.

Some of the consequences reviewed here are already generalizable to more
complex ingredients of genotype-phenotype mappings, most notably protein
folding79–82 and the behavior of cellular control networks83. Recent models
of signaling networks exhibit large connected volumes in the space of kinetic
parameters that generate the same biological behaviors83. Are these behav-
ioral equivalence classes in parameter space analogous to neutral networks in
RNA sequence space?

The nature of discontinuous phenotype transformations described here has
prompted Günter Wagner to speculate84 that it may be experimentally im-
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possible to reconstruct and demonstrate which genetic changes caused a
major evolutionary innovation, precisely because the required genetic back-
grounds are so rare and unlikely to be conserved in any extant species by
virtue of neutral drift. But rather than ending with an unsettling note on
the limits of what is knowable in evolution, I emphasize the decade-long
convergence between experiment85–88 and theory towards characterizing the
distribution of structural and functional properties in RNA sequence space.
The Schultes-Bartel experiment61 has made contact and, perhaps, this con-
stitutes a transition.
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